
* Copyright © 2006 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

191

WRITING FOR COMPUTER SCIENCE: A TAXONOMY OF

WRITING TASKS AND GENERAL ADVICE*

Robert F. Dugan Jr.
Department of Computer Science

Stonehill College
Easton, Massachusetts 02357

bdugan@stonehill.edu

Virginia G. Polanski
The Writing Program

Stonehill College
Easton, Massachusetts 02357

vpolanski@stonehill.edu

ABSTRACT
Computer science graduates lack written communication skills crucial to
success in the workplace. Professional and academic organizations including
ACM, IEEE, ABET, CSAB, and NACE have stressed the importance of
teaching computer science undergraduates to write for years, yet the writing
problem persists. In this paper we provide guidance to computer science
instructors who want student writing skills to improve. First, we organize
prior work on writing for computer science into a goal-oriented taxonomy of
writing tasks. Each task includes a clear, concise, and detailed model that can
be used as the framework for a student writing assignment. Second, we
provide general advice for incorporating writing into any computer science
course. Finally, we discuss the application of our taxonomy and advice to
writing tasks in several computer science courses.

INTRODUCTION
Despite the importance of writing stressed by organizations like ACM, CSAB, and

ABET, computer science graduates lack written communication skills crucial to success
in the workplace. In this paper we provide guidance to computer science instructors who
want student writing skills to improve. We organize prior work on writing for computer
science into a goal-oriented taxonomy of writing tasks. Each task includes a clear,
concise, and detailed model that can be used as the framework for a student writing
assignment. We provide general advice for incorporating writing into any computer

JCSC 21, 6 (June 2006)

192

science course. Finally, we discuss the application of our taxonomy and advice to writing
tasks in several computer science courses.

Our paper begins with two narratives. We believe that our backgrounds (over a
decade programming in industry and a half-century of teaching writing) provide a unique
perspective on the problem of writing for computer science.

Computer Science Professor Narrative
As a computer science undergraduate at an engineering school, I had a pretty dim

view of writing. One of my friends reflected this common view with “I chose computer
science so that I’d never have to take an English course again.” I thought that most of my
professional career would be spent creating interesting software and, of course, making
lots of money. This view changed during a summer internship at IBM when I was asked
to write the user manual for some software I had developed. It had taken me a month to
write the software, and I figured it would take me a week to write the manual. A week
later, I submitted my first, and I assumed, final draft to my supervisor and went back to
programming. Several days later, the draft was returned, “dripping” with red corrections.
Another week went by as I made corrections, and submitted my “new final draft.”
Several days later that draft was returned with more red ink. Several months later, both
my supervisor and I were tired, but happy with the manual. I had spent twice as much
time writing as programming in that internship. My hard work paid off, however, when
a users group voted the manual “most likely to take to a desert island.”

Despite editorial challenges in my manual, upon graduation I was hired by the same
supervisor and worked at IBM for almost ten years. As my career progressed I began to
notice that the people who advanced quickly were both competent programmers and
excellent written and verbal communicators. I found myself writing more user,
requirements, functional specification, and design documents. At my supervisor’s
request, I delivered presentations, and produced written status reports, regularly.
Occasionally I actually got to write software!

Writing was not always a smooth process. On a number of projects my team was
asked to create a particular type of document, (for example requirements), without clear
guidelines for the document’s structure. When development ground to a halt because of
a technical issue, the issue would often be resolved in a furious email exchange between
team members. And it was not always resolved in favor of the best technical resolution,
but sometimes in favor of the more effective communicator. When I worked for a
manager who did not write well, I agonized over how my yearly evaluation would be
interpreted. When I was promoted I found myself in the uncomfortable role of document
reviewer. I often had to restrain myself from completely rewriting the document I was
reviewing.

Years later, I accepted a position as assistant professor of computer science at a
small liberal arts college. My career in industry had taught me that computer scientists
do a significant amount of writing, but many lack writing skills. I wanted to improve my
students’ writing, but I needed help. Experience had made me a better writer despite an
engineering background, but I wasn’t sure I could help students develop these skills. I

CCSC:Northeastern Conference

193

approached a colleague who had been teaching writing for about fifty years, and together
we hatched the idea of co-teaching a software engineering course.

Writing Professor Narrative
I knew I could work with computer science students to help them improve their

writing skills. I had worked with engineers, scientists, and other professionals and
business people in writing classes on campus and on consulting jobs at firms and
companies. I assumed the students would be motivated because they were close to
graduation and jobs in industry. Some or all of them had already done or were involved
in internships.

However, I also assumed that these students would question my competency to write
in their field. Being considered incompetent outside of my own discipline went with the
territory. It was a reaction to the myth that only an expert in another discipline could
write in that discipline. But I had been using my rhetorical and grammatical skills to
analyze models and to determine formats to meet needs in many disciplines and fields.
I had helped traditional students, business and professional people, and other academics
improve their writing and sometimes to get it published.

My technical writing students had prepared manuals for real clients drawing
information from the clients themselves, model documents, textbooks, and outside
consultants. My organic chemistry students had used the ACS Style Guide: A Manual
for Authors and Editors with guidelines for posters, letters to the editor, press releases,
oral presentations, ACS books, journal and magazine articles, scientific research articles,
abstracts, and documentation. These students had also analyzed articles from
professional journals and used them as models for preparing articles about their own
research projects.

With the success of these experiences, I was excited about working in another new
and challenging situation when asked to teach a writing component for a computer
science course. I just wanted my computer science colleague to provide the official
guidelines for preparing workable documents and publishable articles in the computer
science field. When I found out that the computer science field didn’t have such
guidelines, I asked for professional models for the requirements and design documents
and the user manual that I would be expected to help students write. When I found out
that the available models were inconsistent, I knew my challenge would be greater than
I had expected.

PRIOR WORK
Researchers have been studying the problem of writing for computer science for

several decades. Common sources of research include ACM SIGSE conferences, ACM
Journal of Computing in Small Colleges, IEEE Frontiers in Education conferences, and
the IEEE Transactions on Professional Communication. As recently as 2003, work was
presented at the CCSCNE conference on the use of portfolios and rewriting in early
programming courses [Ladd2003].

JCSC 21, 6 (June 2006)

194

Generally speaking, prior research has attacked the writing problem with either a
broad or focused application of writing tasks. Broad solutions apply a small number of
writing tasks across the entire computer science curriculum (for example, using the agile
development methodology in any course to improve student writing [Kussmaul2005]).
Focused solutions apply a single writing task to a specific set of courses (for example,
using diary/journal writing in introductory computer science courses [Fekete2000]).

The small-college-computer-science instructor generally teaches a variety of
courses. Each course has the potential to address the writing problem in a different
manner. As a result, the instructor is responsible for assigning a large variety of writing
tasks. We believe that instructors would benefit from guidance for assigning these
writing tasks. No single solution from the prior research can provide this guidance
because each solution applies to a small number of writing tasks or courses. Therefore,
we decided it is time to take a step back and organize the research and praxis into a
comprehensive taxonomy of writing tasks.

TAXONOMY OF WRITING TASKS
Our taxonomy is divided according to three main goals: writing for learning, writing

for academic communication, and writing for industrial communication. Writing tasks
within each goal are grouped into goal-oriented categories of similar tasks. Each task
includes a description and citation. The citation provides a clear, concise, and detailed
model for the writing task. Instructors can use this model when assigning the task to
students. The taxonomy is related to Orr’s work, but focuses on student writing tasks,
rather than academic-researcher writing tasks [Orr1999].

For example, the goal of reflective learning in a course can be achieved through the
use of a Writing for Learning Task such as the weekly journal/diary. By locating this task
in the taxonomy, the instructor can review prior work and construct a student writing
assignment from the referenced model.

GENERAL ADVICE
In addition to writing tasks, many researchers offer general advice on the

writing-for-computer-science problem. We have categorized this advice, along with
citations in Table 4. Although the advice is wide ranging, some instructions are common:
 • Give assignments a real world context
 • Demonstrate that writing is important in industry
 • Show parallels between the writing process and the software development process
 • Require revision
 • Conduct peer reviews of assignments
 • Use minimal marking
With a decade working in the software industry and fifty years teaching writing, we have
some additional advice on the writing-for-computer-science problem.

CCSC:Northeastern Conference

195

TABLE 1: WRITING FOR LEARNING
Category Genre

Critical peer evaluation [Nelson2000]
peer structured document walkthrough [DOE2002]
portfolio [Ladd2003]
partial revision of student paper [Haswell1983]
critique of journal/magazine article [Bengston2005].
critique of programming language [Dugan2005a]

Persuasive class debate [Egan1996]
essay - discuss sides of issue and argue for one side [Egan1996]
ethics paper [Kirzner2002]

Reflective programming project reports [VanDegrift2004]
response to reading assignment [Jacobson1989]
summary of reading assignment [Jacobson1989]
response to important course topic [Jacobson1989]
response connecting two different lectures [Jacobson1989]
weekly journal/diary [Fekete2000]
weblog [Wikipedia2005]
one-minute essay [Orr2005]
replacement of traditional problem set with writing assignment [Anewalt2002]

TABLE 2: WRITING FOR ACADEMIC COMMUNICATION
Category Genre

Scholarly research proposal [Zobel1996]
research paper [Zobel1996]
magazine article for internal publication [Côté1992]

Oral class presentation [Polack-Wahl2000]

Technical explanation of code/data structure/algorithm [Anewalt2002]
laboratory reports[Parker1995]

Use clear, concise, and detailed models for writing tasks
If a picture is worth a thousand words, so is a model. A model is an example of the

type of writing you want the students to produce. The students can note length, neatness,
and visual format. They can see examples of organization, sentence structure,
phraseology, and word choices as you point them out. For example: Persuasive memos
have headings with To:, From:, Date:, and Subject: [Alred2003]. Letters have traditional
parts in specified places [Alred2003]. Progress reports may be in memo or letter format
with bold section headings and bulleted subheadings [Alred2003]. Formal reports have
many parts in addition to the body. Models will show these parts and the parts within the
body, including the placement and labeling of charts and graphs [Alred2003]. Summaries
accompanied by a copy of the original article can provide insight into the selection of
ideas to be included and techniques for including them logically and smoothly
[Bengston2005]. Models from the workplace when available can be helpful in motivating
students because these models have an air of authenticity.

JCSC 21, 6 (June 2006)

196

TABLE 3: WRITING FOR INDUSTRIAL COMMUNICATION
Category Genre

Team meeting [Alred2003]
 - agenda for meeting[Alred2003]
 - minutes for meeting [Alred2003]
presentation [see Writing for Academic Communication/Oral]
email [Alred2003]
posting to newsgroups/bulletin boards/listserves [WJHCS2005]
memo [Alred2003]

Customer survey/questionnaire [Salant1994]
white paper [Orr1999]
presentation [see Writing for Academic Communication/Oral]
website [Alred2003]
user manual/help [see Writing for Industrial Communication/Project
Management]
proposal/requirements [see Writing for Industrial Communication/Project
Management]
bug report [see Writing for Industrial Communication/Project Management]
executive summary [Writing for Industrial Communication/Project
Management]

Project
Management

weekly status report [Alred2003]
bug report [Pfleeger2001]
core documents:
- proposal [Almstrum2005]
- project plan [Almstrum2005]
- requirements [Almstrum2005]
- design [Almstrum2005]
- test plan [Almstrum2005]
- user manual/online help [Bremmer1999]
executive summary [Alred2003]
project post-mortem report [self-reported]

Career
Management

resume [Alred2003]
letter [Alred2003]
 - acceptance letter [Alred2003]
 - resignation letter [Alred2003]
 - interview followup letter [Alred2003]
job description [Alred2003]
employee appraisal [Orr1999]
team mission statement [Orr1999]

Orient students to basic rhetorical needs
Rhetorical contexts should be set up for writing tasks based on models. Each task

should designate a purpose, the role of the person who needs the information, and the
persona of the students who are responsible for responding to the task. Students can
assume the roles of the people who must produce written documents, namely
programmers. For example, a model for a proposal or for a persuasive memo or letter can
be used to show the need for a predetermined purpose and reader and offer words and
phrases to use when trying to persuade a designated reader.

CCSC:Northeastern Conference

197

Teach types of definitions
Any one or a combination of definitions can be found in models: categorical,

operative, contextual, stipulative, or metaphorical. Technical documents frequently need
to define terms. Students can note the reason for choosing a type of definition and use
that type when needed in a response to a writing assignment. For example, frequently
they will need to categorize a term: “Testing is the filter” Sometimes they will
need to tell how something operates or what it does: “Modularity provides” If the
term has a meaning peculiar to the field or context, they need to specify: “In Computer
Science, robustness is concerned with” If they use a term in a special way, they will
need to stipulate its use: “In this paper, we will use the term reliability for”
Occasionally they may need to use or interpret a metaphor: Frederick P. Brooks, Jr.,
refers to current-day large-system programming as a “tar pit” [Brooks1995].

Teach structure as needed
The first feature apparent in a well-prepared document is the neatness on the page.

The second feature is the ease with which the reader can skim the headings and lists.
Students will note this, but they may not know how to replicate it. Therefore, parallel
structure must be taught: parallelism constructed with individual words, modified words,
phrases, and clauses. The instructor may start by having students note the parallel items
in the model and then refer them to explanations and illustrations of the various
possibilities in any good handbook of the English language. For example: The categories
in the “Writing For Learning” chart are all adjectives, adjectives that are understood to
modify the word writing. The headings under “General Advice” are verbs in the
imperative form: “Use clear, concise, and detailed models . . .”; “Orient students to . .
.”; “Teach types of definitions . . .”; etc. Sentences introducing coordinate ideas begin
with the same structures and sometimes the exact same words: “To address obsolecence
. . .”; “To expand the extent of our literature . . .”; “To assist the
overworked-small-college-computer-science instructor . . .”. Series within sentences are
in parallel forms: all nouns: “organizations including ACM, IEEE, ABET, CSAB, and
NACE” and all adjectives: “clear, concise, and detailed.” Any items connected by and
have been put in parallel form: “We discuss the application of . . . and advice to”

Teach grammar as needed
The instructor may review the model in advance for grammatical structures that

appear frequently and give a pre-lesson or let students write a draft, and then identify
errors and give mini-lessons to help students avoid making these errors. For example,
students should know the difference between active and passive voice and the reasons for
using each. Instructors should know that when students use the passive voice, they are
likely to start sentences with dangling modifiers. A handbook can be used to illustrate
this grammatical error with sentences that the students will not forget, such as “By
making this decision, our final product will not be as flexible.” They will note quite
quickly that the sentence has the final product making the decision instead of a person.
The principle can be applied to sentences in student work where the error is less apparent.

JCSC 21, 6 (June 2006)

198

Use the face-to-face conference
Face-to-face conferences can be used to assist students who have a writing

assignment in progress. In these conferences, the instructor can point out inconsistencies
between the model and work in progress and query the writer about various aspects of
this work. For example: Who is your intended reader? Will that person know what this
word/phrase means? What is the relationship between the idea in this sentence and the
sentence that precedes it? Have you expressed this relationship? How can you express
this relationship? Reword the sentence? Add a transition? Add a sentence?

Recommend the Writing Center
Most colleges and universities have Writing Center (WC) services available to

students. The tutors in these centers are especially effective in helping ESL students with
the English idiom, tenses, and word choices. However, the tutors can also be very helpful
to native speakers of English.

Faculty who want to recommend the WC to their students should talk with the
person in charge about the specific services. Some WCs are open to having faculty
submit assignments for their students. Some WCs have forms for communicating with
the instructor about a student who comes. However, whatever services the WC offers,
students should take an assignment handout to the WC along with their responding drafts.
Sending students to the WC raises the awareness of the instructor to the degree of clarity
of the assignment. Anticipating a WC visit makes a student more conscious of
articulating whatever problems he or she is having. Interacting with a WC tutor gives the
student a clearer sense of what he or she is actually saying, needs to change, needs to add,
or needs to delete.

APPLICATION OF TAXONOMY AND GENERAL ADVICE
We have applied the taxonomy and general advice of this paper to writing tasks in

software engineering, programming languages, and database courses.
During the Spring 2005 semester, we (the computer science professor and the

writing professor) co-taught a writing-intensive, senior software engineering course
which had two goals: to prepare students to design a program for a real client with a real
need and to prepare students to produce the documents required for this project, as well
as several persuasive-type documents critical to team-based software development. To
meet these goals, we assigned students by groups to real clients, found and adapted
appropriate models [Almstrum2005] from our taxonomy, taught needed structure and
grammar from a handbook Technical Writer’s Companion [Alred2003] in classroom
situations, and had the groups meet outside of class with the writing instructor (for peer
and instructor evaluation) to read and revise each document until it reached an exemplary
level.

To determine if student writing actually improved, we took a common approach to
evaluation [Reed-Rhodes1998]: We surveyed software engineering course graduates for
their attitudes toward writing. Using targeted questions with Likert scale responses
(1=strongly agree, 2=agree, 3=somewhat agree, 4=disagree, 5=strongly disagree), we

CCSC:Northeastern Conference

199

surveyed graduates for their attitudes toward writing improvement (avg. 2.63, std. dev.
0.96), writing task guidance (avg. 1.88, std. dev. 0.81), and industrial application (avg.
2.29, std. dev. 1.00). Despite limited sampling (n=8), the survey has encouraged us to
continue using our taxonomy and advice and to continue surveying software engineering
course graduates.

TABLE 4: GENERAL ADVICE
Category Advice

Anxiety and
Resistance

Recognize that CS instructors are anxious about teaching writing [Kay1998]
Attack student anxiety and resistance towards writing [Beer2002]
- understand underlying causes [Beer2002]
- demonstrate importance of writing in industry [Beer2002]
- show parallels between writing process and software development [Beer2002]
- show persuasive writing is a valuable industry skill [self-reported]

Incorporation
of Writing into
Curriculum

Incorporate writing assignments at all levels of curriculum [Cunningham1995]
Provide writing intensive writing experiences within selected computing
courses [Cunningham1995]
Give assignments a real-world context[Cunningham1995]
Incorporate active research into student work[Cunningham1995]
Use short assignments to focus thoughts and as a basis for in-class assignments
[Cunningham1995]
Be abundantly clear about the expectations for the assigned paper
[Anewalt2002]
Vary the type of writing required if possible [Anewalt2002]

Collaboration Encourage collaboration between computer science and writing instructors
[Cunningham1995]
Cooperate with technical writing students [Mengel2000]

Evaluation Distinguish between syntax/mechanics problems and content/organization
problems [Kay1998]
Use hands-on, writing workshops [Pesante1991]
Complete an evaluation sheet for each paper as you read it [Anewalt2002]
Use cold-conferencing rather than formally graded drafts[Anewalt2002]
Conduct peer review of writing assignments [Cunningham1995]
Have students post something on an external bulletin board/newsgroup for
comment [Cunningham1995]
Use minimal marking[Kay1998]
Use electronic portfolios[Ladd2003]

Basic
Principles

Use early definition of terms [Brown1989]
Use simple, parallel construction of ideas [Brown1989]
Have consistency of format and word usage [Brown1989]
Use conciseness and a minimum of redundancy [Brown1989]

Miscellaneous
Concerns

Promote student familiarity with subject literature [Cunningham1995]
Require revision Kay1998]
Publish student work in a formal venue [Cunningham1995]
Find out what others are doing [Pesante1991]
Encourage broad and frequent reading in/out of the discipline[Kay1998]

JCSC 21, 6 (June 2006)

200

With this experience using models, asking for early drafts, and recommending the
Writing Center, I (the computer instructor) proceeded the during Fall 2005 to use a model
adapted from several in our taxonomy [Johnson2006] when assigning a critique of a
programming language in a programming languages course. The adapted model included
a title page, table of contents, section and subsection headings with detailed descriptions,
and a reference section with sample citations [Dugan2005a]. I encouraged the students
to submit early drafts for instructor evaluation, and to use the college Writing Center for
peer evaluation. The model, drafts, and Writing Center allowed the students to focus on
learning and analysis rather than organization and content. The model also gave me
criteria for grading the reports. Students told me that they actually enjoyed writing the
reports, and I was very pleased with the results.

This experience convinced me that adapting models from the taxonomy, explaining
how to use them, responding to early drafts, and recommending peer evaluation in the
Writing Center produced much more desirable results than my previous method. During
Fall 2004, I had taught the same course and asked for the same type of paper, giving
students only a list of topics to cover [Johnson2006] and limited guidance. I had been
very disappointed with the analysis, organization and content of the reports I received
from the class, and I felt uncomfortable grading the reports harshly because I wasn’t sure
how the students were supposed to know what I had expected.

I had similar contrasting experiences with the writing assignments I gave in a
database course during Spring 2003 and Spring 2005. A few weeks into the course I
asked the students to write a memo to a fictional “boss” describing the advantages of a
database system over a flat file system for a new medical application. The first time I
taught the course I was appalled at the disorganized ramblings submitted by the students.
As the red ink flowed from my pen, I realized that the students had no idea how to format
and organize a business memo. How could they? The second time I taught the course,
I gave the students the same writing task and supplemented it with a model [Alred2003],
accepted early drafts, and encouraged use of the Writing Center. The resulting memos
were very professional and demonstrated a clear understanding of database systems. The
students knew what to write and I had criteria for grading.

CONCLUSION
In this paper we have addressed the computer scientist’s lack of written

communication skills crucial to success in the workplace. We addressed this problem
with a goal-oriented taxonomy of clear, concise, detailed writing tasks and original
general advice. We related our successful application of the taxonomy and advice to
several computer science courses.

Experience applying the taxonomy and general advice to our courses has made us
more comfortable assigning computer science writing tasks, but we realize that our
approach has shortcomings. To address obsolescence we have created an on-line
taxonomy that can be updated with new writing tasks and guidelines [Dugan2005b]. To
expand our literature survey beyond IEEE and ACM publications, we intend to examine
other work in the area of technical writing. To assist the
overworked-small-college-computer-science instructor who may not have time to track

CCSC:Northeastern Conference

201

down the paper’s many citations, we recommend the following core writing task
guidelines: The Handbook of Technical Writing [Alred2000], The Holt Handbook
[Kirzner2002], and Writing for Computer Science [Zobel1997].

In future work, we would like to explore techniques for grading writing tasks,
identifying sources of/tracking student motivation, and facilitating computer technology
in a college writing center. We would like to explore practical grading techniques that
do not require a degree in writing or English. We would like to develop a survey to
measure how a computer scientist’s attitude towards writing changes throughout a career.
We hope this survey will show students the importance of writing in a future career.
Finally, we would like to know how the model for a college writing center changes with
the integration of computer technology beyond the basic word processor. For example,
what would happen if real-time collaborative software eliminated the need for
face-to-face meetings at a writing center?

CITATIONS

Almstrum, V. (2005). CS373: S2S Project Documentation Standards. Retrieved Oct.
6, 2005 from http://www.cs.utexas.edu/users/almstrum/cs373/fa05/doc-stds

Alred, F., Brusaw, C., and Oliu, W. (2003). Handbook of Technical Writing, Seventh
Edition. Boston: Bedford/St. Martin’s.

Anewalt, K. (2003). A professional practice component in writing: a simple way to
enhance an existing course. Journal of Computing in Small Colleges. 18, 3 (Feb.
2003), 155-165.

Anewalt, K. (2002). Experiences teaching writing in a computer science course for the
first time. Journal of Computing in Small Colleges. 18, 2 (Dec. 2002), 346-355.

Beer, D.F. (2002). Reflections on why engineering students don't like to write -- and
what we can do about it. In Proceedings of the International Professional
Communication Conference. (Sep. 17-20, 2002), 364- 368.

Bengston, V.L. and MacDermid, S.M. (2005). How to Review a Journal Article:
Suggestions for First-Time Reviewers and Reminders for Seasoned Experts. Retrieved
Sep. 29, 2005 from http://www.ncfr.org/jmf/review_journal_howto.htm

Bremer, M. (1999). The User Manual Manual: How to Research, Write, Test, Edit and
Produce a Software Manual. Grass Valley, CA: UnTechnical Press.

Brooks, F.J. (1995). The Mythical Man-Month: Essays on Software Engineering, 20th
Anniversary Edition. Boston: Addison-Wesley Professional.

Brown, D.M. (1989). Writing good computer documentation. In Proceedings of the
International Professional Communication Conference. (Oct. 18-20, 1989), 114-116.

Côté, V. and Custeau, G. (1992). An integrating pedagogical tool based on writing
articles. In Proceedings of the 23rd SIGCSE Technical Symposium on Computer
Science Education. (Mar. 05 - 06, 1992), 38-41.

JCSC 21, 6 (June 2006)

202

Cunningham, S.J., (1995). Learning to write and writing to learn: integrating
communication skills into the computing curriculum. In Proceedings of the 7th
Software Education Conference (Nov. 22 - 25, 1994), 306-312.

Department of Energy (DOE). (2002). DOE Systems Engineering Methods: Structured
Walkthrough Process Guide. Retrieved Sep. 27, 2005 from
http://cio.doe.gov/ITReform/sqse/download/SW-V3-G1-0902.pdf

Dugan, R. (2005a). CS323 Programming Languages: Language Report Model.
Retrieved Oct. 6, 2005 from
http://www.stonehill.edu/compsci/CS323/ReportModel.doc

Dugan, R.and Polanski, V. (2005b). A Taxonomy of Computer Science Writing Tasks.
Retrieved Oct. 6, 2005 from http://www.stonehill.edu/compsci/bdugan/taxonomy.htm

Egan, M. (1996). Taking Sides: Using Taking Sides in the Classroom: Methods,
Systems and Techniques for the Teaching of Controversial Issues. Dushkin
Publishing/Brown & Benchmark.

Fekete, A., Kay, J., Kingston, J., and Wimalaratne, K. (2000). Supporting reflection in
introductory computer science. In Proceedings of the 31st SIGCSE Technical
Symposium on Computer Science Education (Mar. 7-12, 2000), 144-148.

Haswell, R. H. (1983). Minimal marking. College English, 45, 6, 166-170.

Ladd, B. C. (2003). It's all writing: experience using rewriting to learn in introductory
computer science. Journal of Computing in Small Colleges. 18, 5 (May. 2003), 57-64.

Jacobson, J.M. (1989). Response: an interactive study technique. Reading Horizons,
(Winter 1989), 85-92.

Johnson, E. (2006). CSCI 300 Programming Languages Fall 2002. Retrieved Jan. 11
2006 from http://www.cs.xu.edu/csci300/02f/

Kay, D. G. (1998). Computer scientists can teach writing: an upper division course for
computer science majors. In Proceedings of the 29th SIGCSE Technical Symposium
on Computer Science Education (Feb. 26 – Mar. 01, 1998), 117-120.

Kirszner, L.G., and Mandell, S.R. (2002). The Holt Handbook Sixth Edition. Boston:
Thomson-Heinle.

Kussmaul, C. (2005). Using agile development methods to improve student writing.
Journal of Computing in Small Colleges. 20, 3 (Feb. 2005), 148-156.

Mengel, S.A.; Carter, L.; Falkenberg, J. (2000). A perspective on three cooperating
courses. In Proceedings of the 13th Conference on Software Engineering Education
and Training. (March 6-8, 2000), 265- 272.

Nelson, S. (2000). Teaching collaborative writing and peer review techniques to
engineering and technology undergraduates. In Proceedings of the 30th Annual
Frontiers in Education Conference. (Oct. 18-21, 2000), 1-5.

Orr, J. C. (2005). Instant assessment: using one-minute papers in lower-level classes.
Pedagogy. 5,1 (Winter 2005), 108-111.

CCSC:Northeastern Conference

203

Orr, T. (1999). Genre in the field of computer science and computer engineering.
IEEE Transactions on Professional Communication, 42, 1, (Mar. 1999), 32-37.

Parker, B. C. and McGregor, J. D. (1995). A goal-oriented approach to laboratory
development and implementation. In Proceedings of the 26th SIGCSE Technical
Symposium on Computer Science Education (Mar. 02-04, 1995), 92-96.

Pesante, L. H. (1991). Integrating writing into computer science courses. In
Proceedings of the 22nd SIGCSE Technical Symposium on Computer Science
Education (Mar. 7-8, 1991), 205-209.

Pfleeger, S.L. (2001). Testing the system: problem report forms. In Software
Engineering: Theory and Practice, Second Edition. Upper Saddle River:
Prentice-Hall.

Polack-Wahl, J.A. (2000). It is time to stand up and communicate [computer science
courses]. In Proceedings of the 30th Annual Frontiers in Education Conference. (Oct.
18-20, 2000), 16-21.

Reed-Rhoads, T., Duerden, S.J., Garland, J. (1998). Views about writing survey -- a
new writing attitudinal survey applied to engineering students. In Proceedings of the
28th Annual Frontiers in Education Conference, (Nov. 4-7 1998), 973-979.

Salant, P. and Dillan, D. (1994). How to Conduct Your Own Survey. New York:
Wiley.

Thayer, R.H. and Dorfman, M. (1997). Software Requirements Engineering. IEEE
Computer Society Press.

VanDeGrift, T. (2004). Coupling pair programming and writing: learning about
students' perceptions and processes. In Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education (Mar. 3-7, 2004), 2-6.

William James Hall Computing Services (WJHCS). (2005). A Quick Guide to
Newsgroup Etiquette. Retrieved Oct. 3, 2005 from
http://www.wjh.harvard.edu/wjh/newsgrp.shtml

Wikipedia (2005). Types of Blogs. Retrieved on Oct. 6, 2005 from
http://en.wikipedia.org/wiki/Blog#Types_of_weblogs

Zobel, Justin. (1997). Writing for Computer Science -- The Art of Effective
Communication. Singapore: Springer-Verlag.

